Whole Farm P Management & Economic Tool: FNMP \$

G Erickson, R Koelsch, T Regassa R Massey, V Bremer

Why overfeed phosphorus?

- Ingredient variability between batches
- Uncertainty in recommended levels
- Feeding to meet demands of greatest producing animals
- "More is better" no negative performance effects
- Belief that reproductive performance will suffer without abundance of P

Book values vs Ingredient testing:

- Book values have limited value
- Ingredient testing only as good as the sample taken

- In beef (and dairy?)
 - Challenge is not fine-tuning P mineral supplementation
 - <u>Never</u> supplement mineral
 - How to deal with P in "normal" feeds
 - Corn: 0.31% P
 - DGS: 0.75 to 0.90%
 - CGF: 0.90 to 1.0%
 - Etc.

Impa	ct of DGS of	on excret	tion
 Excretion num 	nbers using AS	SABE std a	pproach
	AVG	MIN	MAX
Diet P, %	0.31	0.25	0.50*
P Excretion	7.0 lb	4.6 lb	14.1 lb
"old" std	13.9 lb		

	Impact of	DGS on P	challenge		
Land Requirements, 4yr P basis (acres)					
Diet:		DGS at 0%	DGS at 40%		
Exc Lan Tim	reted P, kg/yr d required, ac e, hrs/yr	61,000 5800 824	116,000 11,110 1,175		
Cos	t	\$ 48,000	\$ 72,000		
Assu 175 b	mes: 40% of land are ou corn, 60 bu soybea	a accessible an rotation		-	
Koelsch e	t al., 2007				

Impact o	f DGS on P	challenge		
Land Requirements, 4yr P basis (acres)				
Diet:	DGS at 0%	DGS at 40%		
Excreted P, kg/yr	61,000	116,000		
Land required, ac	5800	11,110		
Time, hrs/yr	824	1,175		
Value	\$ 109,000	\$ 192,000		
Cost	\$ 48,000	\$72,000		
Net	\$ 61,000	\$ 120,000		
Assumes: 40% of land are 175 bu corn, 60 bu soybe	ea accessible an rotation			
Koelsch et al., 2007				

N rate compared to a P rate application scheme, with P rate based on 1 yr			
scheme:	N rate	P rate	
Excreted P, kg/yr	116,000	116,000	
Land required, ac	2406	11,110	
Annual land	2406	11,110	
Time, hrs/yr	920	2100	
Value	\$ 192,000	\$ 192,000	
Cost	\$ 52,200	\$ 144,130	
Net	\$ 139,800	\$ 48,070	

Impact of	application	ו "scheme"	
N rate compared to a 4 yr P rate application scheme, with P rate based on 4 yr			
scheme:	N rate	P rate	
Excreted P, kg/yr	116,000	116,000	
Land required, ac	2406	11,110	
Annual land	2406	2,780	
Time, hrs/yr	920	1,200	
Value	\$ 192,000	\$ 192,000	
Cost	\$ 52,200	\$ 71,700	
Net	\$ 139,800	\$ 120,300	

Impact	of DGS	on P chal	lenge	
Costs and Net Value, C-SB rotation 4-Yr P Basis, (\$/hd)				
00070	2500	10,000	25,000	
0 byp 0.30 P 40 byp 0.50 P	3.00 3.90	2.10 3.30	3.00 5.75	
NET VALUE 0 byp 0.30 P 40 byp 0.50 P	2.50 6.10	3.50 6.80	2.50 4.30	
			Kissinger et al., 2006	

Conclusions

Use the tool, make more informed decisions Be sure your feed ingredient decisions make more \$ than manure costs increase \$ of manure account for nutrients fed, it impacts CNMP!

	Ethanol Plant					
	1	2	3	4	5	6
Avg	0.83	0.79	0.87	0.85	0.80	0.78
CV ¹	2.55	5.03	2.80	2.57	2.20	2.88
Min	0.78	0.72	0.79	0.80	0.77	0.70
Max	0.88	0.89	0.91	0.90	0.83	0.81