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Introduction 
Suboptimal milk yield limits the U.S. dairy industry’s productive competitiveness, marginalizes 

efforts to reduce inputs into food production, and increases animal agriculture’s carbon 

footprint. There are a variety of circumstances in a cow’s life which result in hindered productivity 

including heat stress, ketosis, rumen and hindgut acidosis, feed restriction, and psychological 

stress associated with normal animal practices (i.e., pen changes, weaning, shipping). Although 

these insults have different origins, a commonality among them is increased production of 

inflammatory biomarkers and markedly altered nutrient partitioning. We and others have 

generated preliminary data strongly implicating intestinally derived lipopolysaccharide (LPS) as a 

culprit in these situations.   

Heat stress 
During heat stress (HS), blood flow is diverted from the viscera to the periphery in an attempt to 

dissipate heat leading to intestinal hypoxia (Hall et al., 1999). Enterocytes are particularly 

sensitive to hypoxia and nutrient restriction (Rollwagen et al., 2006), resulting in ATP depletion 

and increased oxidative and nitrosative stress (Hall et al., 2001). This contributes to tight junction 

dysfunction and gross morphological changes that ultimately reduce intestinal barrier function 

(Lambert et al., 2002; Pearce et al., 2013), resulting in increased passage of luminal content into 

portal and systemic blood (Hall et al., 2001; Pearce et al., 2013). Endotoxin, otherwise referred 

to as LPS, is a glycolipid embedded in the outer membrane of Gram-negative bacteria, which are 

abundant and prolific in luminal content, and is a well-characterized potent immune stimulator 

in multiple species (Berczi et al., 1966; Giri et al., 1990; Tough et al., 1997). Immune system 

activation occurs when LPS binding protein (LBP) initially binds LPS and together with CD14 and 

TLR4 delivers LPS for removal and detoxification, thus LBP is frequently used as a biomarker for 

LPS infiltration (Ceciliani et al., 2012). For a detailed description of how livestock and other 

species detoxify LPS see our recent review (Mani et al., 2012). Endotoxin infiltration into the 

bloodstream during HS, which was first observed by Graber et al. (1971), is common among heat 

stroke patients (Leon, 2007) and is thought to play a central role in heat stroke pathophysiology 

as survival increases when intestinal bacterial load is reduced or when plasma LPS is neutralized 

(Bynum et al., 1979; Gathiram et al., 1987). It is remarkable how animals suffering from heat 

stroke or severe endotoxemia share many physiological and metabolic similarities to HS, such as 
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an increase in circulating insulin (Lim et al., 2007). Intramammary LPS infusion increased (~2 fold) 

circulating insulin in lactating cows (Waldron et al., 2006).  In addition, we intravenously infused 

LPS into growing calves and pigs and demonstrated >10 fold increase in circulating insulin 

(Rhoads et al., 2009; Kvidera et al., 2016, 2017c). Interestingly, increased insulin occurs prior to 

increased inflammation and the temporal pattern agrees with our previous in vivo data and a 

recent in vitro report (Bhat et al., 2014) suggesting LPS stimulates insulin secretion, either directly 

or via GLP-1 (Kahles et al., 2014). The possibility that LPS increases insulin secretion likely explains 

the hyperinsulinemia we have repeatedly reported in a variety of HS agriculture models 

(Baumgard and Rhoads, 2013). Again, the increase in insulin in both models is energetically 

difficult to explain as feed intake was severely depressed in both experiments. 

Ketosis and the transition period 
Recently, the concept that LPS impacts normal nutrient partitioning and potentially contributes 

to metabolic maladaptation to lactation has started to receive attention. Although LPS itself has 

not been the primary causative focus, general inflammation has been the topic of investigations. 

Increased inflammatory markers following parturition have been reported in cows (Ametaj et al., 

2005; Bertoni et al., 2008; Humblet et al., 2006; Mullins et al., 2012). Presumably, the 

inflammatory state following calving disrupts normal nutrient partitioning and is detrimental to 

productivity (Loor et al., 2005; Bertoni et al., 2008), and this assumption was recently reinforced 

when TNFα infusion decreased productivity (albeit without overt changes in metabolism; Yuan 

et al., 2013; Martel et al., 2014). Additionally, in late-lactation cows, injecting TNFα increased 

(>100%) liver TAG content without a change in circulating NEFA (Bradford et al., 2009). Our recent 

data demonstrates increased inflammatory markers in cows diagnosed with ketosis only and no 

other health disorders. In comparison with healthy controls, ketotic cows had increased 

circulating LPS prior to calving and post-partum acute phase proteins such as LBP, serum amyloid 

A, and haptoglobin were also increased (Figure 1; Abuajamieh et al., 2016). Endotoxin can 

originate from a variety of locations, and obvious sources in transitioning dairy cows include the 

uterus (metritis) and mammary gland (mastitis) (Mani et al., 2012). Additionally, we believe 

intestinal hyperpermeability may also be responsible for periparturient inflammation in dairy 

cows as many of the characteristic responses (rumen acidosis, decreased feed intake, and 

psychological stress) occurring during this time can compromise gut barrier function.  

Rumen and hindgut acidosis 
A transitioning dairy cow undergoes a post-calving diet shift from a mainly forage based to a high 

concentrate ration. This has the potential to induce rumen acidosis (RA) as increases in 

fermentable carbohydrates and DMI stimulate the buildup of short chain fatty acids and lactic 

acid (Nocek, 1997; Enemark, 2008). Rumen acidosis has direct and ancillary consequences 

accompanied by various production issues (decreased DMI, reduced milk yield, milk fat 

depression) and health challenges such as laminitis, liver abscesses, and potentially death (Nocek, 

1997; Kleen, 2003). The mechanisms linking RA and the development of health disorders are not 

entirely clear, however, recent literature has indicated that inflammation associated with 
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epithelial damage and consequential LPS translocation are at least partially responsible for 

production losses associated with RA (Gozho, et al., 2005; Khafipour, et al., 2009). Although many 

hypothesize LPS translocation occurs at the rumen epithelium directly (Guo et al., 2017; Minuti 

et al., 2014), others point towards LPS translocation in the hindgut to be a potential source of 

peripheral inflammation (Li et al., 2012). Interestingly, when RA was induced using either alfalfa 

pellets or high-grain diets, increased peripheral inflammation was only observed in the high-grain 

group, irrespective of rumen acidotic conditions being similar between the two treatments 

(Khafipour et al., 2009a,b). It was hypothesized that the grain supplemented group likely had 

increased starch flow to the hindgut, and therefore, increased fermentation that could 

potentially lead to hindgut acidosis and LPS translocation across the large intestine. However, we 

were unable to recreate production losses and systemic inflammation when we abomasally 

infused 500 g/d of resistant starch (Piantoni et al., 2018) or even 4 kg/d of purified corn starch 

(Abeyta and Baumgard, unpublished).  Both of our aforementioned experiments were 

accompanied with marked reductions in fecal pH so it is unlikely that large intestinal acidosis per 

se is the specific reason for systemic inflammation described in the previous reports (Li et al., 

2012, Khafipour et al., 2009a,b).  

Feed restriction and psychological stress 
Stress associated with feed restriction along with several other regular production practices (e.g., 

heat stress, weaning, transportation, overcrowding, restraint, social isolation/mixing) is 

frequently encountered in animal agriculture (Chen et al., 2015) and is associated with 

gastrointestinal permeability. In fact, we have repeatedly reported reduced intestinal barrier 

integrity in pigs pair-fed to their HS counterparts (Pearce et al., 2013; Sanz-Fernandez et al., 

2014). Furthermore, we recently demonstrated shortened ileum villous height and crypt depth, 

indicating reduced intestinal health in cows fed 40% of ad libitum intake (Kvidera et al., 2017d). 

Recent literature indicates that the corticotropin releasing factor (CRF) system may be the 

mechanism involved in stress-induced leaky gut (Wallon et al., 2008, Vanuytsel et al., 2014). The 

CRF and other members of the CRF signaling family including urocortin (1, 2, and 3) and their G-

protein couple receptors CRF1 and CRF2, have been identified as the main mediators of the stress-

induced intestinal changes including inflammation, altered intestinal motility and permeability, 

as well as shifts in ion, water, and mucus secretion and absorption (as reviewed by Rodiño-Janeiro 

et al., 2015). These alterations appeared to be regulated in large part by intestinal mast cells 

(Santos et al., 2000). Mast cells are important mediators of both innate and adaptive immunity 

and express receptors for the neuropeptides CRF1 and CRF2, which may in part explain the 

association between emotional stress and intestinal dysfunction (Smith et al., 2010; Ayyadurai et 

al., 2017). Furthermore, mast cells synthesize a variety of pro-inflammatory mediators (i.e., IFN-

𝛾 and TNF-α) that are released upon activation, mainly via degranulation (de Punder and 

Pruimboom, 2015). Excessive mast cell degranulation plays an important role in the pathogenesis 

of different intestinal inflammatory disorders (Santos et al., 2000; Smith et al., 2010). A better 

understanding of the role psychosocial stress plays on the initiation of different intestinal 

disorders in livestock is of great interest for animal agriculture systems. 
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Metabolism of inflammation 
LPS-induced inflammation has an energetic cost which redirects nutrients away from anabolic 
processes that support milk and muscle synthesis (see review by Johnson 1997, 1998) and thus 
compromises productivity. Upon activation, immune cells become obligate glucose utilizers via a 
metabolic shift from oxidative phosphorylation to aerobic glycolysis (not anaerobic glycolysis 
typically learned about in biochemistry classes), a process known as the Warburg effect (Figure 
2). This metabolic shift allows for rapid ATP production and synthesis of important intermediates 
which support proliferation and production of reactive oxygen species (Calder et al., 2007; 
Palsson-McDermott and O’Neill, 2013). In an effort to facilitate glucose uptake, immune cells 
become more insulin sensitive and increase expression of GLUT3 and GLUT4 transporters 
(Maratou et al., 2007; O’Boyle et al., 2012), whereas peripheral tissues become insulin resistant 
(Poggi et al., 2007; Liang et al., 2013). Furthermore, metabolic adjustments including 
hyperglycemia or hypoglycemia (depending upon the stage and severity of infection), increased 
circulating insulin and glucagon, skeletal muscle catabolism and subsequent nitrogen loss (Figure 
3; Wannemacher et al., 1980), and hypertriglyceridemia (Filkins, 1978; Wannemacher et al., 
1980; Lanza-Jacoby et al., 1998; McGuinness, 2005) occur. Interestingly, despite 
hypertriglyceridemia, circulating BHB often decreases following LPS administration (Waldron et 
al., 2003a,b; Graugnard et al., 2013; Kvidera et al., 2017a). The mechanism of LPS-induced 
decreases in BHB has not been fully elucidated, but may be explained by increased ketone 
oxidation by peripheral tissues (Zarrin et al., 2014). In addition to changes in circulating 
metabolites, LPS has been shown to increase liver lipid accumulation both directly through 
changes in lipid oxidation and transport enzymes and indirectly through increases in circulating 
NEFA (Bradford et al., 2009). Collectively, these metabolic alterations are presumably employed 
to ensure adequate glucose delivery to activated leukocytes. 

Energetic cost of immune activation
The energetic costs of immunoactivation are substantial, but the ubiquitous nature of the 

immune system makes quantifying the energetic demand difficult. Our group recently employed 

a series of LPS-euglycemic clamps to quantify the energetic cost of an activated immune system. 

Using this model, we estimated approximately 1 kg of glucose is used by an intensely activated 

immune system during a 12 hour period in lactating dairy cows. Interestingly, on a metabolic 

body weight basis the amount of glucose utilized by LPS-activated immune system in mid- and 

late-lactation cows, growing steers and growing pigs were 0.64, 1.0, 1.0, and 1.1 g glucose/kg 

BW0.75/h, respectively; Kvidera et al., 2016, 2017b,c, Horst et al., 2018a). A limitation to our model 

is the inability to account for liver’s contribution to the circulating glucose pool (i.e., 

glycogenolysis and gluconeogenesis). However, both glycogenolytic and gluconeogenic rates 

have been shown to be increased during infection (Spitzer et a., 1985; Waldron et al., 2003). 

Furthermore, we have observed both increased circulating glucagon and cortisol (indirect 

markers of hepatic glucose output) following LPS administration (Horst et al., 2018b,c) suggesting 

we are underestimating the energetic cost of immunoactivation. The reprioritization of glucose 

trafficking during immunoactivation has particular consequences during lactation as it requires 

~72 g of glucose for synthesizing 1 kg milk (Kronfeld, 1982). 
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Increased immune system glucose utilization occurs simultaneously with infection-induced 

decreased feed intake: this coupling of enhanced nutrient requirements with hypophagia 

obviously decrease the amount of nutrients available for the synthesis of valuable products (milk, 

meat, fetus, wool). We and others have now demonstrated that HS, rumen acidosis, and 

psychological stress increase circulating markers of endotoxin and inflammation. We believe that 

the circulating LPS originates from the intestine and initiates an immune response.  This activated 

systemic immune response reprioritizes the hierarchy of glucose utilization and milk synthesis is 

consequently deemphasized. 

Calcium and Inflammation 
Circulating Ca is markedly reduced during infection and the response is conserved across species 

(Tennant et al., 1973; Carlstedt et al., 2000; Toribio et al., 2005). Yet even though hypocalcemia 

is commonly observed, the biological reason for the decrease remains largely unexplained. 

Interestingly, Ca repletion during infection increases the incidence of organ failure and mortality 

(Malcolm et al., 1989). Therefore, sepsis induced hypocalcemia is hypothesized to serve as a 

protective strategy. Transition period hypocalcemia has long been considered a negative 

consequence of increased secretion of Ca in colostrum and milk coupled poor pre-calving dietary 

Ca strategies; which disrupt hormonal regulation of Ca homeostasis (Goff et al., 2014). However, 

despite successfully implementing pre-calving dietary Ca approaches subclinical hypocalcemia 

remains a common pathology. Therefore, it is possible that inflammation, at least to some extent, 

contributes to hypocalcemia in the transition cow, and the decrease in circulating Ca may serve 

some beneficial effect.  

Calcium uptake is a key initial step of leukocyte activation and function (Lewis, 2001) and several 

investigators have proposed hypocalcemia is the underlying cause of periparturient 

immunosuppression (Kimura et al., 2006). However, Skarnes and Chedid (1964) demonstrated 

disrupted LPS detoxification via non-inflammatory mechanisms in the presence of Ca (Figure 4; 

reviewed by Eckel and Ametaj et al., 2016). To better understand Ca’s role during infection we 

investigated the effects of maintaining eucalcemia following an LPS challenge in lactating cows. 

Interestingly, we observed an increase in inflammatory biomarkers and a decrease in productivity 

(i.e., milk yield) in cows maintained at eucalcemia compared to those allowed to develop 

hypocalcemia (Horst et al., 2018d). Our results are in agreement with previous studies that 

hypocalcemia may be a protective strategy. Therefore, it brings to question whether preventive 

strategies for subclinical hypocalcemia are necessary for optimal cow performance. 

Conclusion 
There are various situations in an animal’s life that hinder production performance (i.e., heat 

stress, feed restriction, rumen acidosis, etc.) and we suggest, based upon the literature and on 

our supporting evidence, that LPS (of intestinal origin) may be the common culprit in these 

circumstances. Immune activation in response to LPS markedly alters nutrient partitioning as a 
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means of fueling the immune response. More research is still needed to understand the 

mechanisms and consequences of intestinal permeability and associated inflammation in order 

to provide foundational information for developing strategies aimed at maintaining productivity. 

Furthermore, it is of interest to further elucidate the contribution of inflammation to subclinical 

hypocalcemia frequently observed in postpartum cows. 

*Parts of this manuscript were first published in the proceedings of the 2016, 2017 and 2018

Southwest Nutrition Conference in Tempe AZ.
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Figure 1. Markers of inflammation in healthy (solid line) and ketotic (dashed line) transition
cows. 

Figure 2. Metabolic pathway of a resting (A) vs. activated (B) leukocyte.
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Figure 3. LPS induced alterations in peripheral metabolism

Figure 4. Calcium’s role in LPS detoxification
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